

TrustOS - The Trust Operating System

Warning

🚨 Hey, these docs has been deprecated.

Please visit trustos.telefonica.com/docs [https://trustos.telefonica.com/docs] to read our new documentation and keep up to date with all the new enhancements. 🚀

A complete Blockchain solution which abstracts all the complexity of blockchain technology.

	Introduction

	Architecture

	Getting Started

	Modules

	Track

	Token

	Cert

	ID

	TrustID

	Use cases

	Tutorials

	Demos

	Releases

	Contributing

Note

If you have questions not addressed by this documentation, or run into
issues with any of the tutorials, please contact us to find additional help.

Introduction

TrustOS is both an SDK and a powerful, easy-to-use set of decentralized network modules deployed in several blockchain networks. It makes easier to anyone to get the benefits of blockchain technology without facing the inherent complexity of it. If you want to enter the Blockchain space, it does not matter the underlying technology, the consensus mechanisms, the network, the consortia or the infrastructure anymore. Just get the better of blockchain invoking the TrustOS.

Our vision

As a telco, we really believe Blockchain adds a trust layer to operations. So, we must make accessible this trust without adding additional complexity, and the best way to do that is to embed it in the network. So, we aim to design a “Blockchain for ALL” proposition to change the way companies and entrepreneurs build their digital services in a decentralized world. Nobody must validate, certificate or audit what the services are doing, the info they handle, its authorship or how they are working, the services themselves will do it through a Blockchain layer embedded in the networks.

Problem statement

Companies are interested in Blockchain and are constantly asking themselves what technology is for and if there is any way to take advantage of it in their business. They feel both interest and frustration at the complexity of choosing a technology, developing their Smart Contracts in specific languages, deploying their own network, and so on. The result in most cases is that for now the possible advantages are totally out of reach.

However, the use cases just benefit from technology in the same way and we can offer and bundle these benefits to the community without having to really understand the technology or deploying their own network.

Target audience

TrustOS is initially designed to enable developers who wish to take advantage of Blockchain to easily integrate it into their products and services by invoking a set of JSON APIs, without investing in understanding the technology or startings ophisticated ad-hoc developments. They need us to offer them a simple, flexible, affordable and fast way to add the advantages of Blockchain to their products and services without having to set up or operate their network. They need to record information immutably, create and manage tokens or reach consensus on information gathered from different sources. We build the ecosystem of trust they want through TrustOS so they can use Blockchain and add their advantages to their value proposition without dealing directly with the technology. They want trust as a service.

Solution

TrustOS is a network-deployed middleware that makes the customer’s business systems independent from the Blockchain networks:

	Enables use of Blockchain without knowledge of the technology​

	Simplifies integration​

	Facilitates adaptation to new Blockchain technologies and networks​

	Allows third party verification of information

How can TrustOS help you?

INMUTABILITY:
The underlying cryptography allows the existence, authorship and integrity of the information that is generated and transmitted to be attributed with absolute certainty​

TRACEABILITY:
The succession of transactions makes it possible to reconstruct without a doubt the complete history of events without the ability to repudiate​

TRANSPARENCY
The technology itself allows the information to be notarised and verified autonomously without the intervention of trusted third parties​

Architecture

TrustOS software is deployed on any Hyperledger Fabric based blockchain network. Support for Quorum/Ethereum and CORDA based networks will be added soon.

Once deployed, an HTTP API is published so that it can be used from any programming language. The API hides much of the complexity of working with a Blockchain, but its direct use still requires low-level knowledge. For that reason, TrustOS also includes some libraries to be consumed by applications and other Smart Contracts. Therefore, TrustOS commands can be invoked from outside Blockchain through its APIs or from other Smart Contracts inside the Blockchain itself.

Since the installation and deployment of TrustOS requires considerable efforts, TrustOS is perfectly designed to allow the majority of business logics and client systems take advantage of its benefits without having knowledge of Hyperledger Fabric neither deploying anything, just using simple APIs. Moreover, for those who are deepening into the field, doors will be open to deploy TrustOS software over its own network.

TrustOS also includes some administration features and interfaces that allow the developer community to add new modules to TrustOS.

How does it work

The following figure describes a layer-based architecture:

[image: TrustOS Architecture]

APIs do not speak the Blockchain language (send, validate or verify a transaction, query a block, provision or obtain gas at an address, compile, deploy or execute contracts, manage and safeguard cryptographic material, etc.) but the language a customer understands (create an asset and update its status or position, add account activity, verify an identity, create or transfer a token, etc.).

Initially, TrustOS is available for deployment on any Hyperledger Fabric-based network and interacts with Ethereum (mainnet and testnet networks), Polygon (mainnet and testnet networks) and Alastria’s Network B (built on Hyperledger Besu). In the coming months support will be added for implementation in other technologies. We put a lot of effort into evolving the product 🤓

Getting Started

Why worrying about the low-level of blockchain technology,
and having to worry about building your network when you can leverage
the benefits of the technology without having to know the details of
its operation. TrustOS abstracts all the complexity of blockchain
technology implementing the basic operations you need to leverage
the power of blockchain technology.

We have created several APIs for tracking the whole lifecycle of assets, for creating and managing transferable tokens, for offering agreement between diferent parts and ensuring confidence and integrity in the all the generated information.

Before starting, it may be interesting for you to know about the architecture and the different modules that compound TrustOS.

Login

In order to use the APIs, you need to have an active user and login to use the system. Every API has a login method, which asks for a user and password.

Login UI

To facilitate the first interactions with TrustOS there is a login website so that the user can easily login and authenticate the next use of the website through cookies that contains the JWT and that expires after the JWT becomes invalid.

[image: Login UI]

Login request

Once your solution has matured, it would be nice to integrate the login process through API requests.

A call to the login method will return a JWT token, of this form:

{
 "message": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyIjoidGVzdCIsImV4cCI6MTU2MDAwMDE5MH0.M4PBSslERUImcOpWgg--N-2ZNW306BzWXTZVJgtdXWE"
}

Choose an API and start developing

Once the login is sucessfully done it is time to start developing your own solution based on one of the TrustOS modules.

Swagger UI

We have created a simple website that aggregates all the accesible modules so that the user can easily reach and test all the functionalities.

[image: Swagger UI]

If you have login using the Login UI, it is simple to see and copy the JWT Token just clicking the header green button JWT.

Choose an API to see what there is inside and then you have to click the button Authorize, on the right of the screen.

From there, in the “value” field of ApiKeyAuth, you should write “Bearer” followed by the JWT Token already copied:

Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyIjoidGVzdCIsImV4cCI6MTU2MDAwMDE5MH0.M4PBSslERUImcOpWgg--N-2ZNW306BzWXTZVJgtdXWE

You should now see that all the locks in swagger are closed, meaning that you are now authenticated!

API request

Every call to the API, has to be authenticated, so the caller must provide this message as proof of his identity.

Add the following header to your HTTP request in order to authenticate your call:

Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyIjoidGVzdCIsImV4cCI6MTU2MDAwMDE5MH0.M4PBSslERUImcOpWgg--N-2ZNW306BzWXTZVJgtdXWE

 Attention

 Please make sure you write "Bearer" before the JWT token

If you are calling the APIs from Postman, you can set manually the headers (you can see an example in tutorials section):

{
"Authorization": "Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyIjoidGVzdCIsImV4cCI6MTU2MDAwMDE5MH0.M4PBSslERUImcOpWgg--N-2ZNW306BzWXTZVJgtdXWE"
}

Now it is time to read more about the TrustOS modules.

Modules

[image: TrustOS modules]

Track

Creation and tracking the life cycle of the assets in the Blockchain. An asset is a digital representation of a real asset in the physical world. Using this module you can record immutable information that uniquely characterizes the asset and update its attributes inherently linked to the instant it was created/updated, so you do not need a trusted third party to certify the existence of that information at any time since you recorded it.

Token

Creation and management of transferable tokens to build new markets, gamification strategies and easily create transferable value on the network. Applications can issue tokens, transfer them, lock them, etc., keeping at any time an absolute and certain control of the property or rights of use over it. ERC20 and ERC721 standards are implemented to make easier any kind of integration or migration with/from external environments.

Cert

Creation, management and sign of digital certificates on blockchain. A certificate is a tamper-proof and verifiable collection of data that represents a process, a file/document, an accomplishment or any activity that can benefit from the inmmutability and authenticity.

ID

Identity management and decentralised services. Through this module it is possible to create and manage identities. TrustOS acts as the custodian of the identity keys, but it is also possible to operate with external identities and even import them. In addition, it has integration with OpenID to operate with identities generated in the different identity providers.

Track

Track API is used to create, manage, and follow life cycle of digital assets on the blockchain. An asset is a digital representation of a real asset in the physical world. Through this API tracking the whole state changes of every asset can be implemented in an easy way, taking advantage of the inherit benefits from blockchain.

API Specification

An abstraction API with all the asset functionalities.

Asset

An asset is a digital representation of a real asset in the physical world. An asset records every single state or data change (f.e. the update of metadata, the transfer of ownership, etc.) This allow us to track the whole transactions since its creation in an inmutable and transparent way.

Every asset has the following structure:

	assetid : <string> Unique identifier of the asset

	data : <json> JSON of inmutable data. Can have as many fields as required by the use case

	metadata: <json> JSON of mutable data. Can have as many fields as required by the use case

	timestamp : <string> UNIX date of asset creation

	userOwner: <string> Owner of the asset

	hash : <string> Hash of the asset

Sample structure (Click to expand)

 Token

Token

Token API allows developers to easily create, transfer and get transferable tokens on the Hyperledger Fabric network. Through this API giving transferable value to simple assets can generate new markets and gamification strategies.

API Specification

An abstraction API with all the token functionalities.

Token

A token is an asset that gets a transferable value on the blockchain network and can represent whatever it can be imagined, either an abstract or real/physic thing. The term is a little bit confusing at first, since a token can represent the whole class, in which the total supply is declarated, or individual tokens (balances) transferable between users.

Every token has the following structure:

	name : <string> Name of the generic token.

	symbol : <string> Shortname for the token.

	owner : id<string>:company<string> Token owner. It has to be specified the ID of the owner and the ID of the organization it belongs to inside the organization.

	ethereumAddress: <string> Address in the Ethereum blockchain, in case we want to link it to a public blockchain token.

	totalSupply : <integer> Total number of individual tokens issued.

Sample structure (Click to expand)

 Cert

Cert

Cert API is used to create, sign and verify digital certificates on the blockchain. The entire functionalities are based on a Smart Contract that handles the lifecycle of every certificate in the most autonomous and secure way.

By using Blockchain, we create trust, ensure security and reduce the risk of fraud, forgery or information leakage. reduce the risk of fraud, forgery or information leakage.

Blockchain adds immutability to business process information:

	Everything is recorded forever.

	Anyone can verify it irrefutably and without repudiation.

	No one can alter it or therefore doubt it.

A certificate is a digital document that is issued at the request of a user and through cryptographic techniques and blockchain storage ensures the existence at a given time of the content being certified and guarantees its integrity and immutability.
Each certificate combines 3 evidences to establish with that the user was in possession of the certified content on the date of issuance. content on the date of issuance of the certificate.

	User digital signature

	Digital fingerprint of the content to certificate

	A blockchain timestamp

Any information exchange or registration process can benefit from certificates to provide guarantees of the immutability over time of that information and that none of the parties that may have had access to it have modified it for their own benefit. We can think of certificates as the simple way that, thanks to Blockchain, allows us to create evidence about the existence of a certain content without the involvement of a third party to guarantee it.

Is it possible to create the following certificate types:

	Asset: Certification of an asset. This asset must be created first in the Track API.

	Data: Certification of any kind of information. The data could be documents or free text in string o JSON format.

	NFTs: Certification of Non Fungible Tokens to guarantee its authenticity.

API Specification

An abstraction API with all the certificate functionalities.

Certificate

A certificate is a tamper-proof and verifiable collection of data that represents a process, a file/document, an accomplishment or any activity that can benefit from the inmmutability and authenticity.

Thanks to certificates, it allows you to assure any fact in your business case recording the information along with parameters that everyone can verify (e.g. signatures, issuance/expiration time, network evidences, etc..).

Every certificate is identified by a unique ID and is composed of three complementary but different parts: Data, Metadata and Access.

IMPORTANT: Every certificate can be also identified by a custom ID (externalId) that is user’s choice. Due to this, the certificate can be consulted both by its id and by its pesonalized id.

[image: Certificate model]

Thus a certificate has the following structure:

	certID : <string> Unique identifier of the certificate.

	data : <json> JSON of certificate data that is inmutable.

	metadata: <json array> Array of transactions that feed the certificate (e.g. verification instructions, signatures, revocation and public registration).

	access : <json> JSON of granted accesses to interact with the certificate (e.g. admin, sign, read access).

Sample Certificate structure (Click to expand)

 ID

ID

An abstraction TrustID API implementation. It wraps the functionality of the TrustID SDK in order to offer basic identity management services to users comfortable delegating the responsability of their keys to a custodian. ID API acts as the third-party custodian of the users keys.

API Specification

The implementation considers that the API is the third-party custodial of
TrustID keys. Currently the keystore is implemented with a FileKeystore,
MongoKeystore comming soon. Private keys from users are stored ciphered
with a passphrase. In order to call every function and unlock the account
the passphrase needs to be provided. The API has the following routes.

Identity Methods

POST - /id/login

It return a JWT to interact with services authenticated
using JWT using TrustID as identity backend. This functionality is offered
for every user in the system (even those for which we are not the
custodials of the keys). Some services may be still authenticated with JWT,
and we want to support this authentication even of TrustID users.

	id : <string> Unique identifier of the user.

	password : <string> Password of the user.

Sample structure (Click to expand)

 TrustID

TrustID

TrustID is a standalone identity module for TrustOS. We followed a decentralized identity approach for its design, where users (and services) are identified through a DID.

TrustID is an opensource project and it was released as an opensource project under the umbrella of the Hyperledger Labs.

These DIDs follow the W3C standard, and they serve as a unique ID to identify users. DIDs aggregate all the pieces of public information required to authenticate a user (i.e., their public key or X.509 certificate).

This is the structure of a DID Identity:

	id : <string> Unique identifier of the identity using the W3C standard.

	pubkey : <String> Public key of the identity.

	privkey : <string> Private key of the identity.

	type : <string> Algorithm used in order to generate the keys.

	controller : <String> Verifier of the identity. In future, an identity should have more than one controller.

Example:

{
 "id": "did:vtn:trustid:d830c50977703f421a0ed5a8707ecfe50559fe73dd2bf90c261b76a1379acbea",
 "type": "RSA",
 "controller": "",
 "access": 0,
 "privkey": "U2FsdGVkX1+t4HgMMEsla3Kw050Td00gS0Crs5Q/D95LQ0Q8KAM3D8CIDQSbWf2fVlZZqvn2Rw5rr8nVkQRPVCAXQcLf3ufw53qLyB2pOqZh3hWWJ8T0jwc1esn6ONkDR4oyKXMWU1dJjilfmkpcv9u87YqTJAUxkfXRgAN+X5d/rO4Q0yOTMDyJpQe7DsCusRYAU42Xf2ZTV+v2ZnPHMm/aN18Zmk3xRh7/KH1Sz8LjJNpDgatYcETupYfIrdKES21mNAbSikn7UXzXB3gPrHIP9JucQqckgStpwgwf1qnI2P7xEXB6pZKBb9v5riCzxCygbWajDyDApGt9K3Jx8ULNNHeZ4BZ4FVgZ6NI4gYSrurdF4GXe0c+DZlnexJwpYAIQmq5r49ZrxC7mVK0gs4o2lXOt0P5adwDh1zbDUPMEJ6jrRV2b7/nthyUEJy10JlK0BCpwms+AnJ8JY5nn25z8JD4+p5i6zpq4IOuZaOf1qsja3fuGstH/0tPlGHvu556gqN8vIVGMt9QwzUIE+kH+GxmyHEi/TV8MRQmyGeCFtsZT9EoS5io1bP7mMC3+KvwvAXuqZXnvHBh5k7RreykIX6VpuJdUwibv5ram7DxV9wXLyVc8zbFWAWwoaFE9XVYxykTFFiD5Soui7Ddrf5dR5UPZ0Gs5SW79A6BxLlnGSgIOt4yuDIprHSRL0QglBvUVf1spUM4w1s8tcRWZmYy6rEeH3kIDLcUoAKDfhqUcQKkNkPrq9mLNMnHB178KJbpwjyFUly7tqZER67hfnYoc0CHPpryD2PhSjrMsJ23bc3xLm2bjRtqeBB3NB7lJhaZ6mshsFy3TIBdnBmb8cafENTDUEYLGFKaVf9gn+tqMMU5dAj2VT46UHMnrwqD0jRE8yKLzcUNxR1bWI+oB5cbtijbkf8O1W4js6yZgkEHd9QVcoS3pGladPPNKxKavPyNEJOSOAZ6KBLhsLgrNyYHMdcaJdMwcDc9/0uMlJ+4PW21GxdmV9uw8NdocpxWjusfHjsmPl5bno0nq9HcmOvKKdU5cwQKJS/eaQc8GS104tDHjurxriS7KXHBLDGllzDl3QOskMw7RDb5jOLUbq2Zl0p0nznitKnLrHTc7/xMfAY8d8OXD5yhzps/JQUEQDWy0OoheJ8CPmmsF22HmNce+/ylRfI1bv2/cHYN8oz+7wGO/LCFW9cPv0s5Dlwvix6NsHfXHzLu0Vo9lbsn+LcPgA5+JMOBDnJ+ba2ps4QGRc/i5gCF8NrFaa+tc2EXRLpAD33r1sxicCVm7CSK4jVWTg6MCkGbqGaaQTEx+x9RUp5og8Ap0IZ2OxjUVe9BaMpHwdyfcfjzG1J0sR485wMQS4FZvf2s10fhqV6GJxnr8dxgZMfZD8gBpJRveumqMAHD2PCs3LY+eIQzIio2wG7hy6fuZ6rZFZn5TOAxPT4t8IOEHluzUUukHzh0uBxBTLahQJAREFMKXzekU7WJlHxyBl5ISRBn2lrfjjskAclCW5JiusqJKWx7DDHaZLIYdxvszTi9MCLHJyCc6B/wfxw5sTC6rCoAt8n+pcdIiAXfuzyMtkthsdELXtrXJ84BeSc0YAob0/duPfHVikNDdQOcFNWWKH1f/6Y5R0Qcf1QaDIkfdjX77smM2duO6jkV3g1xrGpwUyFiHM+YHYp0UsPOa/YzVEpWRJu/tIivCmxiSZwTom1QNo7Y7PtkReIeW3RvA8vlhEGMYGrg6jzZOA4aXjYpYxM5O8zWTANRhQbs4DtBOSXGrw7YtKmTdC9B1waiKs3SG6npmNquO3IyMWEHfrDjEsYoca4XoEdT1/egKjPQi4rgqvjLYmcTkWYD27XaP2NM8L+pcBeeTN2f3MCCfhM4niuDF1l09GG9G703Z3GHmWJP8dHWCs+CVJgn06/OET9Eo25i5XdUwOEGgB2fqJSLxt5Gflm6TPeehqGM6q4ivFad9CQ8mUDcCWtw+DYvRTxXAy1TiBGgs9UbMy7lFMayUHfWNh5clhhOHxxTmHdsIO3gw7OkTwVQ2bLBliKLJdTr46D4gUka1vmfo7vTUU3c05OtPV2zwWkoButbRR+8koEKNoSfw0gBMjgu3u17tLASg2JGBJ1WLp1SOn571FsgKOWyepZDObrDFO8P+nCCc4LPocOpjds4fWXMvOaS4XU0BHrKF5YWvxpLIA2zMHVd3I/szcPvRgsM73WByrmZLAKAetOgv4li2OwjitLZsrOKZ5+58EiMcqr8LgiiMyVSC3c8luuL14BT1cFN0BaUKLVtzOuIv48bQhFeE",
 "pubkey": "-----BEGIN PUBLIC KEY-----\r\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAxfun1NH3jOlNRuX0z7cr\r\n5eFWCt/xUSKwikYg7NRoaNn/NNAQln/BDSamVG3RwlmM/dvUt783Hp7YqeHscXmp\r\ngKwWiF/RycT3Sx9l3qC0MfLlbmsQJ0ZqO+Iuy+vjAxq4RGTS1dzuCjipPy4yBCxB\r\nrWT/q3lFboWaEAoFA+DFm0Hwt47P+lApAfcMc0JduW31gaULUNpqTZyQJBwBKfk1\r\nBZPrurutwnEuOxOOOFNXXL/IUSqneC+71drGO4xA1Sq1bKtsJE9WYW3U8w4C8dHs\r\nU1rq9z/MOAsUlz+DGzyIMI16ypjTC8T4BkWg9vGPgf/C8ropgsbx+9fMKBSisHG5\r\ntQIDAQAB\r\n-----END PUBLIC KEY-----\r\n"
}

This is the structure that is stored in the DLT platform that belongs to an user or device identity:

	Did : <string> Unique identifier of the identity using the W3C standard.

	PubKey : <String> Public key of the identity.

	Controller : <String> Verifier of the identity. In future, an identity should have more than one controller.

	Access : <integer> Policy of the identity in order of identity operations, 0 root, 1 admin, 2 user.

Example

{
 "Did ": "did:vtn:trustid:d830c50977703f421a0ed5a8707ecfe50559fe73dd2bf90c261b76a1379acbea",
 "Controller": "",
 "Access": 0,
 "PubKey": "-----BEGIN PUBLIC KEY-----\r\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAxfun1NH3jOlNRuX0z7cr\r\n5eFWCt/xUSKwikYg7NRoaNn/NNAQln/BDSamVG3RwlmM/dvUt783Hp7YqeHscXmp\r\ngKwWiF/RycT3Sx9l3qC0MfLlbmsQJ0ZqO+Iuy+vjAxq4RGTS1dzuCjipPy4yBCxB\r\nrWT/q3lFboWaEAoFA+DFm0Hwt47P+lApAfcMc0JduW31gaULUNpqTZyQJBwBKfk1\r\nBZPrurutwnEuOxOOOFNXXL/IUSqneC+71drGO4xA1Sq1bKtsJE9WYW3U8w4C8dHs\r\nU1rq9z/MOAsUlz+DGzyIMI16ypjTC8T4BkWg9vGPgf/C8ropgsbx+9fMKBSisHG5\r\ntQIDAQAB\r\n-----END PUBLIC KEY-----\r\n"
}

This is the structure of a service identity:

	serviceID : <string> Unique identifier for the service.

	Name : <string> Chaincode or smart contract identifier at the DLT level.

	Controller : <string> Owner/admin of the service.

	Access : <string> Access policy to the service.

	Channel : <string> Network ID of the service.

Example:

{
 "serviceID": "track",
 "name": "trackscc",
 "access": {
 "policy": "PUBLIC"
 },
 "channel": "telefonicachannel"
}

In order to uniquely identify chaincodes and services deployed in TrustOS, we decided to also give them DIDs so that they could be seamlessly discovered and accessed even if they “live” in independent channels not shared by all the organizations of the network.

All the authentication and management of identities in the system is performed on-chain through an “Identity Chaincode”.

If user A wants to start interacting with the network, he requests the generation of a new DID. The related keys to this DID could be an existing X.509 issued by a valid organization, or even an Ethereum-related public key (internally we use all the JWS, JWE, JWK, secp256k1, etc. RFCs to make our Fabric infrastructure compatible with identities of any nature for the sake of interoperability). This DID generation request has to be validated by a valid organization of the network. Once verified, every transaction signed by user A and directed through a Proxy chaincode is authenticated successfully and delegated to the corresponding chaincode.

[image: TrustID Flow]

The TrustID project is conformed by the aforementioned chaincode and a client SDK to ease the integration and interaction with TrustID-enabled networks.

TrustID is designed to ease the management of identities for the case of TrustOS. Users shouldn’t need to hold a different set of credentials for each network or decentralized application they interact with. The same credentials used to access your owned Bitcoins and manage your tokens in Ethereum should let you update the state of a Fabric asset or launch a secondary market in TrustOS.

TrustID SDK

This SDK exposes all the functionalities required to interact with TrustID-based DLT networks.

Install

	To install this library you need access to the private repo:

npm install trustos-trustid-sdk

Structure

The library has the following modules:

Wallet

	wallet.ts: Core module of the library. It wraps all the state and logic for identity management and interaction with TrustID networks. To start using the SDK a new wallet needs to be initialized. A wallet exposes the following methods:
	setKeystore(keystore: Keystore): void: Sets a type of keystore, supported: in memory, filesystem, mongodb.

	generateDID(type: string, controller: string, passphrase): DID: Generates an identity.

	storeDID(did: DID): Promise<boolean>: Stores the did in the keystore.

	updateDID(did: DID): Promise<boolean>: Updates info from DID.

	listDID(): string[]: Returns dids stored in keystore.

	recoverKeySSS(id: string, secrets: Buffer[], newPassword: string): Promise<void>: Recovers the key.

	updatePassword(id: string, oldPassphrase:,passphrase: string=""): Promise<void>: Updates the password to unlock the did.

	updateTempKeyDID(id: string, passphrase:,tempPassphrase: string=""): Promise<void>: Unlocks the account with a temporal key.

	addNetwork(id: string, network: TrustID): void: Adds a new network to interact to.

Class DID

	class DID: Has the following structure:
	id: string: Id string that identifies the DID.

	pubkey: string: PublicKey of the DID.

	type: string: Key type (RSA / EC / OKP).

	controller: string: Verifier of the identity.

	access: number: Access level.

	private privkey: string: Private Key of the DID.

	private recoveryKey: string: Private Key to recover the DID.

And exposes the following functions:

	unlockAccount(passphrase: string): void: Unlocks private key in order to use the DID.

	unlockAccountTemp(passphrase: string): void: Unlocks private key with a temporal key in order to use the DID.

	lockAccount(): any: Locks the private key for a DID.

	sign(payload: object, passphrase: string): string: Sign a payload with a specific DID.

	verify(signature: string, id: string): any: Verifies a signature from a DID.

	updatePassword(oldPassphrase:, passphrase:): Promise < DID >: Updates the password.

	generateRecoveryKey(password:string, shares: number, threshold: number): Promise <Buffer[]>: Generates the recovery key using shamirs secrets sharing.

	generateRecoveryKeyTemp(passwordTemp:string, shares: number, threshold: number): Promise <Buffer[]>: Generates the recovery key using shamirs secrets sharing unlocking the account with the temporal Key.

	recoverKey(secrets: Buffer[], newPassword: string): Promise < DID >: Recovers the key using the secrets generated with Shamirs secrets sharing algorithm.

	exportDID(withPrivate: boolean) : Exports a Did stored in the keystore.

	importDID(obj: any): Imports a DID and stores it in the keystore.

	sign(payload: object): Promise < string >: Generates a JWS from a payload using an id from the wallet.

	verify(signature: string, did: DID): Promise < any >: Verifies a JWS from a payload using a did.

TrustID operations

	TrustID.ts: Interface that enables the inteoperation between the drivers and the different functionalities of TrustID. The only component implemented currently is the trustIDhf.ts enabling the interaction with Hyperledger Fabric TrustID.
networks.
	configureDriver(endpoint: string): void: Sets the network endpoint to interact with the TrustID network.

	disconnectDriver(endpoint: string): void: Disconects the network endpoint to interact with the TrustID network.

	createIdentity(did: DID): Promise<object>: Create an identity in TrustID. It generates a new DID in the wallet and register it in the network.

	importIdentity(did: DID, controller?: DID): Imports an existing identity to the chaincode.

	verifyIdentity(adminDID: DID, id:string): Promise<object>: Verifies an identity as an admin.

	getIdentity(did: DID, id: string): Promise<object>: Gets a registered identity from TrustID.

	revokeIdentity(adminDID: DID, id: string): Promise<object>: Revokes a registered identity. Only supported by the owner or controller of the DID.

	createService(did: DID, serviceDID: string, name: string, isPublic: boolean): Promise<object>: Creates a new service in the TrustID network.

	updateService(did: DID, serviceDID: string, access: Access, isPublic: boolean): Promise<object>: Updates the information from a service.

	updateServiceAccess(did: DID, serviceDID: string, access: AccessPolicy): Promise<object>: Updates the access from a service.

	getService(did: DID, serviceDID: string): Promise<object>: Gets information from a registered service.

	invoke (did: DID, serviceDID: string, args: string[], channel: string): Promise<object>: Invokes a function of a registered service in the TrustID network.

	query(did: DID, serviceDID: string, args: string[], channel: string): Promise<object>: Queries a function of a registered service in the TrustID network.

	PolicyType (policy: PolicyType, threshold:?Number, registry:?object): It
defined the policyType to be used for a service. There are currently three
types of policyTypes supported (more could be easily added according to
your needs)
* PublicPolicy: Grants public access by any user to your service.
* SameControllerPolicy: Only verified identities whose controller is the
same controller who created the service has access to the service (this
policy comes pretty handy when you want to define “corporate-wide” services).
* FineGrainedPolicy: Grants fine-grained access to users to your service.
In this policy you explicitly define the access of users to the service.
There are two ways of using this policyType, you can define a threshold
so every user with an access level equal or higher than the threshold
is granted access to the service; or you could use fine-grained
access levels defined in the registry, where you would add the following
tuple: {<did>, <access_role>}. Thus, only users in the registry
with an access level over the threshold will be granted access to the
service with access_role permissions.

Driver operations

	driver.ts: Interface that enables the implementation of connection drivers with different TrustID networks. The only driver implemented currently is the hfdriver.ts enabling the interaction with Hyperledger Fabric TrustID networks.
	connect(config: object): Promise<object>;: Connects with a DLT networks.

	disconnect(config: object): void: Disconnects of a DLT network.

	checkConnection(channelName?:string): Promise<object>: Check the connection with a DLT.

	callContractTransaction(id: string, fcn: string, args: any, channel?: string): Promise<object>: Write operation in the DLT.

	getContractTransaction(id: string, fcn: string, args: any, channel?: string): Promise<object>: Read operation in the DLT.

Keystore

	keystore.ts: Interface that enables the implementation of keystore storages.bThere are currently two implementations of keystore supported: FileKeystore.ts (to store DIDs in file keystore)and MongoKeystore.ts (to store DIDs in MongoDB).
	abstract getDID(id: string): DID: It gets specific DID from keystore.

	abstract storeDID(did: DID): boolean: It stores DID in keystore.

	abstract updateDID(did: DID): boolean: It updates DID in keystore.

	storeInMemory(did: DID): boolean: Stores DID inMemory for easy and performant use.

	listDID(): string[]: List DIDs in memory.

	setDefault(did: DID): boolean: Set DID as default identity for the keystore wallet.

If you want additional information of TrustID, its SDK and its functionality check the following repo [https://github.com/hyperledger-labs/TrustID].

Example of use

// Use library
var id = require('trustos-trustid-sdk')
import { Keystore } from './keystore/keystore';

// Initialize wallet
wal = id.Wallet.Instance;

// Initialize new FileKeystore with storage at ./keystore
const ks = new sdk.FileKeystore("file", "./keystore");
wal.setKeystore(ks)
// ccp is the configu file of a Hyperledger Fabric network
const ccp = JSON.parse(fs.readFileSync("../ccp-dev-dsn.json", 'utf8'));
const config = { // additional config to connect with hyperledger fabric
 stateStore: '/tmp/statestore',
 caURL: 'https://ca:7054',
 caName: 'ca',
 caAdmin: 'admin',
 caPassword: 'password',
 tlsOptions: {
 trustedRoots: "Certificate",
 verify: false
 },
 mspId: 'telefonicaMSP',
 walletID: 'admin',
 asLocalhost: false,
 ccp: ccp,
 chaincodeName: "identitycc", //name of the trustid contract deployed on fabric
 fcn: "proxy",
 channel: "channel1"
}

// Create HF driver to interact with a hyperledger fabric network
var trustID = new sdk.TrustIdHf(config);
// Add and configure the network driver in our wallet.
wal.addNetwork("hf", trustID);
await wal.networks["hf"].configureDriver()

// IDENTITY OPERATION
 // Generate key pair locally.
const did = await wal.generateDID("RSA", "test", "test")
await did.unlockAccount("test")
 // Register in the platform.
await wal.networks.hf.createSelfIdentity(did)
 wal.setDefault(did)
// Get the registered identity.
let res = await wal.networks.hf.getIdentity(did, did.id)
console.log("[*] Get registered identity\n", res)

//SERVICES OPERATIONS
await wal.networks.hf.createService(did, "coren-trackscc", "track", "PUBLIC", "channel1")

let res = await wal.networks.hf.getService(did, "coren-trackscc")
// Create an asset in the service: Track operation via trustid
const asset = {assetId: "test"+Date.now(), data:{"a":1, "b":2}, metadata: {"c": 4}}
const assetStr = JSON.stringify(asset)
// Invoke tract
res = await wal.networks.hf.invoke(did, "coren-trackscc",["createAsset", assetStr], "channel1")
console.log("[*] Asset creation:\n", res)
 // Get the created asset.
res = await wal.networks.hf.invoke(did, "coren-trackscc",["getAsset", JSON.stringify({assetId: asset.assetId})], "channel1")
console.log("[*] Asset registered\n", res)

 Use cases

Use cases

TrustOS enables companies to develop new decentralised services for a variety of industries and situations.

Proof of Everything

The Trust module allows you to record and store on the network any type of information (contracts, mail, messages, content, media, etc.) that you want to be verifiable to anyone at any time from registration. Any supply chain or inventory management solution can be easily implemented by integrating the Trust module into business processes.

Issue certifications

It is possible to create an asset always verifiable for the business processes: ticket sales, training and education, certificates of origin, ownership and authenticity, etc.

Secondary markets

The Token module can be used to create and manage tokens that represent any asset in the real world (from physical assets to usage rights or intangible assets such as a person’s time) that can be transmitted or validated according to ERC20 and ERC721 standards. We can think of mobility vehicles in cities (scooters, motorcycles, cars, etc.), collaborative economy resources (apartments, cars, etc.), rationalization of the use of shared resources (meeting rooms, visiting slots, medical consultations, etc.) or any physical or digital asset to be modelled.

Digital ID

The decentralized ID approach allows you to add security to any process by validating people and device identities and verifying digital signatures without sharing a large amount of unnecessary data.

 Tutorials

Tutorials

In this section you will find snipets of code to integrate API calls to your page

Postman

Postman is a fantastic software that lets us run requests against our APIs.

One of the many great tools of Postman are collections, sets of grouped requests that can be exported/imported, in order to be run all together for testing purposes.

Postman collection

	First, download the collections we have created on the folder miscelanea/postman

You will see 2 diferent files: collections and enviroment. Download both, as we will explain later what are enviroments for.

	On Postman, click on “Import” , and then select Import file.

After doing so, on the left pannel you should see the collection you just imported, as shown in the image

[image: alt text]

	Now that we can see the collection, lets take alook at the URL for which the request is being made:

[image: alt text]

We can see that the URL contains: ” {{url}} “

This is a variable in POSTMAN. The nice things about using variables, is that we can change the endpoints of the APIs without having to modify the requests, but only the enviroment file, where the enviroment variables are specified.

To load a specific enviroment file, click the configuration button, manage enviroment, and select the enviroment file you want to load.

[image: alt text]

Great! Now, by clicking on the eye, you can watch the actual values of the enviroment values

[image: alt text]

Side note
Why do we say “actual values”? Because values can change dinamically

We can see that under the URL field there are some others others.

Concretely, pre-reqest scripts are scripts that execute right before the query is made, where tests are scripts that execute after the request is made.

[image: alt text]

Luckily you dont have to worry about this, since we have already taken care of it.
When you execute the login request, the Auth token received is set as the value of the variable “AuthToken”, which is later used in the Header tab (as can be seen in the second image of this tutorial)

	Finally, now that we have everything set up, click on the “Runner” tab on the top left of the screen. Select the collection you want to run, the enviroment file you want to use for this collection, and run the tests!

[image: alt text]

Managing requests

NodeJS

Axios library

Axios is a promise based HTTP client for the browser. Using promises is great when dealing with code that requres chains of events.

const axios = require('axios');

axios.post('https://trustapi.tid.es/trust/asset', {
 headers: {
 Authorization: 'Bearer ' + token // Token is a variable that stores the JWT
},
 body: {
 'input':'whatever'
 })

 .then(response => {
 console.log(response.data.url);
 console.log(response.data.explanation);
 })
 .catch(error => {
 console.log(error);
 });

HTTP

If you dont want to use third party libraries,you can use node http standard module. However, this option is a little more verbose than the preceding one

const https = require('https')

const data = JSON.stringify({
 input: 'whatever'
})

const options = {
 hostname: 'https://trustapi.tid.es/',

 path: '/trust/asset/create',
 method: 'POST',
 headers: {
 'Content-Type': 'application/json',
 'Content-Length': data.length,
 'Authorization': 'Bearer '+token // Where token is the JWT
 }
}

const req = https.request(options, (res) => {
 console.log(`statusCode: ${res.statusCode}`)

 res.on('data', (d) => {
 process.stdout.write(d)
 })
})

req.on('error', (error) => {
 console.error(error)
})

req.write(data)
req.end()

Python

Requests

You dont really want to use any other module!

import requests

auth_token='kbkcmbkcmbkcbc9ic9vixc9vixc9v'
hed = {'Authorization': 'Bearer ' + auth_token}
data = {'app' : 'aaaaa'}

url = 'https://trustapi.tid.es/trust/asset'
response = requests.post(url, json=data, headers=hed)
print(response)
print(response.json())

Shell

Lets not forget our old friend curl. This way can also be integrated in any other programming language calling something like exec.shell(command)

curl -X POST "https://trustapi.tid.es/trust/asset/create" -H "accept: application/json" -H "Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyIjoidGVzdCIsImV4cCI6MTU2MTEyMjMwOX0.Qu28A580dTOXPAX9bKsnEuHRk8NxFLGL0iPkK5RuOKg" -H "Content-Type: application/json" -d "{ \"assetid\": \"1\", \"data\": {}, \"metadata\": {}, \"registerInEthereum\": \"true/false\"}"

ReactJS

 Demos

Demos

In this section you will find snipets of code to make APIs calls to test and see the results for different use case examples. These demo applications allow to understand how easy and fast things are building a new blockchain-based solution or integrating your systems with TrustOS.

Vaccine tracker

Vaccine Tracker is an easy demo based on Track API that allows us to follow the whole transport process for a vaccine from origin to destination and to monitor constantly critical measures (e.g temperature, humidity)

Example JSON structures (Click to expand)

 Releases

Releases

TrustOS started with the initial v1.0.0 release. Since that several changes have been implemented in order to improve the functionality and performance of each API. Take a look at the last changes.

Track API

 v2.1.0 [October 2020]

 Contributing

Contributing

You are more than welcome to contribute with TrustOS!

Soon it will be open to the community of developers who want to take part of this amazing project. The next new module of TrustOS can be developed by yourself. Stay tuned!

 Index

Index

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/images/telefonica_white.png

_static/images/telefonica_whitelogo.png
000 -
- Telefonica

_static/up.png

_images/architecture.png
Public and Telco
networks

<

Business logic and client’s IT systems

T o e e

Do

APITRUST

[o
& BB A pgos

APITOKEN APITRACK APISETTLE
software

Trust0S Smart contracts engine

Blockchain software

5[—

_images/cert_model.png
Certificate

Data

Metadata

Access

_images/cert_swagger.png
Authentication Autnentication of users via a JSON Web Token JWT A
l /login Login user with their own credentials. \/l
[m /refresh Refreshes the login session using a valid JWT. I al

Certificate management Basic methods about certficates. ~
[/certificate/content/create Creates anew certfcate from customised content. v ﬂ]
[Jcertificate/file/hash Gensrates ahash fom aie. v ﬁ]
[Jcertificate/file/create Croses anow corfcate from a fle hash v ﬁ]
l /certificate/file/full Generates ahash from afile and creates a new certifcate from these hash. v ﬂ]
[/certificate/asset/create Creates anew cerlfcate from an assel v ﬂ]
[/certificate/nft Creates anew cortiicate from NFT. v ﬂ]
[/certificate/nft/collection Creates anew cerlfcate from NFT Colection. v ﬂ]
(A /certiticate/{certID} et e cuent catcnsfonsin. vl
(AN /certificate/file/{file_hash} Gasacontcat rom ol hash vl
[/certificate/{certID}/sign Signsacertiicate using a key in custody (TrustOS). v ﬂ]
[/certificate/{certID}/sign/external Signsa cerificate using an extenal key. v ﬂ]
[/certificate/{certID}/register Registers cerifcate evidences in public networks. v i]
[m /certificate/register/providers I gels the available networks to register % a]
[/certificate/{certID}/revoke Revokes avalid certiicate. v ﬁ]
[m /certificate/{certID}/history Gels the ransaction history of a cerlifcate. % gl
[m /certificates Gets all ceriificates for the loged user. I al

Advanced methods Advanced functionaitties about certificates. A
(IEEAN /certificate/{certin}/access Gotihsgrted sxssosoracontt v al
l /certificate/{certID}/access Modiies the visibility and reader users for a certificate. v ﬂl
[m /certificate/{certID}/signers Geis signers and signatures for a cerlficate. % gl
[/certificate/{certID}/signers/add Addsnew signers for a ceriicate. N ﬁ]

Advanced signature Advanced signature functionalies for certicates. N
(BEEA /certiticates{certio)/advancedsign/init ntaisesaancedsgraur or s confat. v al
[m /certificate/{certID}/advancedsign/status Checks cerficate statuss with advanced signature. % al
[m /certificate/{certID}/advancedsign/document Gets certicate signed with an advanced signaure. % al
l /certificate/advancedsign/notification Sends notifications for advanced signature. v ﬂl

_images/certs_creationview.png
Certificate creation

Name Trustos Certificate.

Description “This certifcate s a tamper-proof and veriafable collection of data that
represent a proccess stored on Blockchain

pusic [
Signerrs Type and press enter
Type hsset o

Assetto centfy asset-example Q

Timerange (J Noasset to certfy found

[.

Talefonica | sLockcHam

_images/certs_homeview.png
TRUSTOS CERTS Trustos Platform

WHAT IS TRUSTOS CERTS?

Trus ts1is @ blockchain-based certfcation platform that allows to create and vrfy
documents, actions, facts o states ina easy and fast way You can cre ign and verify
igital cerificates, as same time as you legally protect your businesses and

every type of data o
create trust links with your customer

HOW IT WORKS?

With TrustOS procedures are
equired to validate

data. Ifsigners
egister

1 the creation of digital certificate:
wil sign the
veryane at

imple. Allstart
d sign the information content n the certificate, the
hthe signatures can be verified b

ertificate in order

ificate along time and also t can be

their approval. Thus thec

share with those who e invalved n the pro

Telefiica | sLockcnam

nav.xhtml

 Table of Contents

 		
 TrustOS - The Trust Operating System

 		
 Introduction

 		
 Our vision

 		
 Problem statement

 		
 Target audience

 		
 Solution

 		
 Architecture

 		
 How does it work

 		
 Getting Started

 		
 Login

 		
 Login UI

 		
 Login request

 		
 Choose an API and start developing

 		
 Swagger UI

 		
 API request

 		
 Modules

 		
 Track

 		
 Token

 		
 Cert

 		
 ID

 		
 Track

 		
 API Specification

 		
 Asset

 		
 Authorised assets

 		
 API Methods

 		
 POST - /asset/create

 		
 GET - /asset/{assetId}?isAuthorised=boolean

 		
 POST /asset/{assetId}/update?isAuthorised=boolean

 		
 GET - /asset/{assetId}/transactions?isAuthorised=boolean

 		
 POST - /asset/{assetId}/transactions/range?isAuthorised=boolean

 		
 POST - /asset/{assetId}/transfer

 		
 POST - /asset/{assetId}/rules

 		
 POST - /asset/{assetId}/authorise

 		
 POST - /asset/{assetId}/unauthorise

 		
 GET - /assets?isAuthorised=boolean

 		
 POST - /assets/create

 		
 POST - /assets/update

 		
 POST - ​/asset​/{assetId}​/batch​/array?isAuthorised=boolean

 		
 POST - ​/asset​/{assetId}​/batch​/range?isAuthorised=boolean

 		
 POST - ​/asset​/{assetId}​/batch​/updateArray?isAuthorised=boolean

 		
 POST - ​/asset​/{assetId}​/batch​/updateRange?isAuthorised=boolean

 		
 POST - /asset/{assetId}/admin/create

 		
 POST - /asset/{assetId}/admin/delete

 		
 POST - /asset/{assetId}/admin/authorise

 		
 POST - /asset/{assetId}/admin/unauthorise

 		
 POST - /asset/{assetId}/evidence?isAuthorised=boolean?networkId=int

 		
 POST - /asset/{assetId}/getEvidence?isAuthorised=boolean

 		
 GET - /asset/{assetId}/getEvidences?isAuthorised=boolean

 		
 How we run the application

 		
 Testing the Application

 		
 Errors management

 		
 Token

 		
 API Specification

 		
 Token

 		
 API Methods

 		
 POST - /token/create

 		
 GET - /token/{tokenId}

 		
 GET - /token/{tokenId}/allowance/{owner}/{spender}

 		
 POST - /token/{tokenId}/approve

 		
 GET - /token/{tokenId}/balance/{userID}

 		
 GET - /token/{tokenId}/transactions

 		
 POST - /token/{tokenId}/transfer

 		
 POST - /token/{tokenId}/transferfrom

 		
 POST - /token/{tokenId}/transferownership

 		
 POST - /token/{tokenId}/transferblock

 		
 POST - /token/{tokenId}/transferunblock

 		
 How we run the application

 		
 Testing the Application

 		
 Errors management

 		
 Cert

 		
 API Specification

 		
 Certificate

 		
 API Methods

 		
 POST - /certificate/content/create

 		
 POST - /certificate/file/hash

 		
 POST - /certificate/file/create

 		
 POST - /certificate/file/full

 		
 POST - /certificate/asset/create

 		
 POST - /certificate/nft

 		
 POST - /certificate/nft/collection

 		
 GET - /certificate/{certID}

 		
 GET - /certificate/file/{file_hash}

 		
 POST - /certificate/{certID}/sign

 		
 POST - /certificate/{certID}/sign/external

 		
 POST - /certificate/{certID}/register?networkId=integer

 		
 GET - /certificate/register/providers

 		
 POST - /certificate/{certID}/revoke

 		
 GET - /certificate/{certID}/history

 		
 GET - /certificates

 		
 GET - /certificate/{certID}/access

 		
 POST - /certificate/{certID}/access

 		
 GET - /certificate/{certID}/signers

 		
 POST - /certificate/{certID}/signers/add

 		
 POST - /certificate/{certID}/advancedsign/init

 		
 GET - /certificate/{certID}/advancedsign/status

 		
 GET - /certificate/{certID}/advancedsign/document

 		
 POST - /certificate/advancedsign/notification

 		
 How we run the Application

 		
 Testing the Application

 		
 Errors management

 		
 ID

 		
 API Specification

 		
 Identity Methods

 		
 Identity Recovery Methods

 		
 OpenID Methods

 		
 Signature methods

 		
 Services methods

 		
 Signed Transactions

 		
 OpenID Connect integration

 		
 OpenID integration

 		
 General OpenID identity onboarding flow

 		
 OpenID flow details and requirements

 		
 Resource request flow

 		
 Testing the application

 		
 TrustID

 		
 TrustID SDK

 		
 Install

 		
 Structure

 		
 Example of use

 		
 Roadmap

 		
 Use cases

 		
 Proof of Everything

 		
 Issue certifications

 		
 Secondary markets

 		
 Digital ID

 		
 Tutorials

 		
 Postman

 		
 Postman collection

 		
 Managing requests

 		
 NodeJS

 		
 Python

 		
 Shell

 		
 ReactJS

 		
 Demos

 		
 Vaccine tracker

 		
 1 - Login into the platform

 		
 2 - Create asset: Vaccine batch

 		
 3 - Add rules: Temperature and humidity measures

 		
 4 - Update asset (first transport update - Lyon)

 		
 5 - Update asset (transport update with TEMPERATURE ALARM - Barcelona)

 		
 6 - Update asset (transport update with HUMIDITY ALARM - Zaragoza)

 		
 7 - Update asset (last transport update - Madrid)

 		
 8 - Demonstrator

 		
 TrustOS Certs

 		
 1 - Login into the platform

 		
 2 - Create certificate from a file

 		
 3 - Demonstrator

 		
 4 - Sign certificate

 		
 4 - Register and revoke certificate

 		
 Karma

 		
 1 - Login into the platform

 		
 2 - Create customized token

 		
 3 - Transfer tokens to other user

 		
 4 - Block amount of tokens

 		
 5 - Get balance of user

 		
 6 - Get transactions of user

 		
 7 - Get transactions of other users (only for token owner)

 		
 Releases

 		
 Track API

 		
 Token API

 		
 Settle API

 		
 Cert API

 		
 Trust API

 		
 Contributing

_images/current_enviroment.png
coren-tokenapi

authToken

tokeniD

Globals

echo_digest_realm

echo_digest_nonce

coren-tokenapi vie n

Edit

trustapi.id.esttoken

eyInbGCIO}IUZIINIISInRSCCISIKPRVC ey VyljoidGVzdCls|
mVACCIEMTU1OTKAMTgHNNO.MjeGEqUpIlocKTV-
3uePMHS0 JgB2TOKUPTIIOATPS,

Chaincode Instantiated Successfuly

Edit

Users

ErulxeJSEmeVIIF3ZmYCKCZKLENVTRC.

_images/enviroment.png
coren-tokenapi v ©
vend | Login || regarar | caa g 520 @ || mtacod nsante] | upgrace [o @ [cue @ |[s [nesnend cree @ |[sogm wog % || cree @ |[certne | Germero]| + [one g ®

» Login Examples (0) v

ion Headers(d) Body® Prerequest

Code
Key Value Descrption BulkEdic Presets ¥

Accept application/json

ContentType application/json

Authorization Bearer ({authToken}}

Authorization Bearer

_images/certs_verificationview1.png
95c46d70f26c1e6478f256af14ced

The certificate with ID 95¢46d70f26¢1e6478f256af14ce91b976a47843f0b7fucb542c1b0a60375b1 and
name Contract Certificate has been successfuily registered in blockchain at 2020-12-10 09:35:48 +0000 UTC
with

This certificate has been requested to be signed by 2 additional signers.

Thisis a tamper-proof and verifiable certificate powered by TrustOS.

_images/certs_verificationview2.png
@ CERTIFICATE INFORMATION oo o o

ID: 95c46d70f26¢1e6478f256af14ced1b976a47843f0bTfuchS42c1b0a60375b1

Name: Contract Certificate

Description: This certificate is a tamper-proof and veriafable collection of data that represent the Contract

stored on Blackchain.

Content: » “content”

Issued on: 2020-12-1009:35:48 +0000 UTC
jid-vin:trustid:a998f3773186dd381ch476d0e56059eed31437d0612e860780108e8684df4S

Issued by

Verification code: MTWwn2E +IMXBrTiToKGSHWHXq8SPOCEGHOAPLIFIM=

© SIGNATURES oo ool

The certificate has 2 additional signers to validate it

A ciovinsignen has already signed e Detals

O ssmsomaznasnorsanes e (N

© EVIDENCES ‘oo ool

[HISTORY OF TRANSACTIONS

Transaction 1 - 2020-12-10 10:25:51 0000 UTC

» "4792c0ad3e769b9680d6cccI2d5e318da8437 Ecabbbet2ca2]565167970843b5 "

_images/login_ui.png
Welcome

TrustOS

Username

Password

[J Remember me

Do you have any problem? Please, contact
with the support team:

_images/manage.png
coren-tokenapi v o &%

Manage Environments
Shared Environments

Params. Ve

_images/import.png
Filter
History Collections

All Me Team

Postman Echo

37 requests

SETTLEMENT-API
9 requests

TOKEN-API
11 requests

[healtheheck

0 tegn

S oen

b05T Create anewtoken

61 Getthe okenino

GEr Getthe token allowance
sost Approve aspender

GET et the token balance of a user
GET Getthe token transacions
vost Transfer oken

b05T Transfer oken from user

POST Transfer the token ownership

_images/login.png
POST v htpsi/{{url}iogin

ation Headers (4) b Tess®
T /xecution
2
Sewyt
S i testsrstotus cote s 07 - resporseCode.cote = 200

Ui 3sonbata - 3501 par ce(responseody

et setEnviromen i oo sothToRen”, Ssondate.nessage)s
5)
5 Gateh(e)
10 lone.error(e)s

1)
I

_images/openid_authorization_flow.png
1D AP

HTTP/ 11 2000k

Content-Type: applcatonfsoncharset=UTF-3
‘Cacne-Contol nostore
Pragma: no-cache

¢
o token - <d_tokens,
‘access token <acoess foken value>,
efrosn token <eftosn foken vale>,
token type” : ‘Bearer”
i, - <token atme>

Iopeniaiauthorzatonut

gontty onboaraing

“user: <user >,
“omair: <user emalt>,
“contolor”: <controler >,
“d - cuser dd>,

o token <. tokens,
“oken croaton” : <>,
“token_ expration <>,

Authorization

Server

D AP
Database

_images/openid_integration.png
Final App

1D AP
‘Consurmes OpeniD API

Trustip
SDK

3rd Authorization Server

e

_images/openid_request_flow.png
Cert Appiiation Web

Ieerifcatelcontenticreate

Cert API

Iservicafinvoke

«

“Gortficats name
‘Conficate short descrtion,

S |

)

1D AP

¢
Sp [mner maesans
P | uncton':“creaeGantcai
args” [con]

)

_images/token_swagger.png
Login User login

rrost o

e ——

Token Everything about the token

/token/create Iniialize a new token

/token/{tokenId} Getthe token info

/token/ {tokenId}/allowance/{ownerId}/{spenderId} Get ihe oken allowance between owner and spender

/token/{tokenId}/approve Approve spender to withdraw from your own

/token/ {tokenId}/balance/{userId} Getthe token balance of a user

/token/ {tokenId}/transfer Transfer token

/token/ {tokenId}/transferblock Senda blocking ransfer for a user

/token/ {tokenId}/transferunblock Unblock a blocked ransfer

/token/{tokenId}/transferfrom Transfer /withdraw token from user

/token/{tokenId}/transactions Getmy token transactions

/token/ {tokenId}/transferownership Transfer the ownership of a loken

_images/track_swagger.png
Login User login

==

/login Login

==

/refresh Refresh the login session

Asset Everything about the assets

POST

/asset/create Create a new asset

GET

/asset/{assetId} Getthe assetinfo

POST

/asset/{assetId}/update Update metadata for an specific asset

-

/asset/{assetId}/transactions Get the asset transactions

POST

/asset/{assetId}/transactions/range Get a specific range asset transactions

POST

/asset/{assetId}/transfer Transfer the ownership of an asset

POST

/asset/{assetId}/rules Add rules for an specific asset

POST

/asset/{assetId}/authorise Authorise asset access for an user

POST

/asset/{assetId}/unauthorise Unauthorise asset access for an user

o
m
-

/assets Get all assets for a user

_images/openid_sequence_flow.png
Final APP 1D AP Auth Service

auorzatonUr paramidProvider param:auhCalback)
P @

tes: auorzatonUn
-—

roq: autnonzatonun aunGalback = Fina App Endpoint

res: code

aunorzatonToksniparam:cos) oq:code

os: JWT (idny Toker)

Ia onboaring?
os: JWT (idny Toker)
-—

roq-resuorce AP

P

_images/runner.png
COLLECTION RUNNER

Previous Runs

@ Token-api
coren-tokenapi, amin ago
AllPassed

@ Token-api
coren-tokenap
AllPassed

@ Tokenapi
No environment, 5 jun, 2019
Allpassed

@ Token-api
coren-tokenapi, 5Jun, 2019
AllPassed

@ Tokenapi
No environment, 5 jun, 2019
Allpassed

@ Tokenapi
No environment, 5 jun, 2019
Allpassed

@ Sewlementapi
No environment, 4jun, 2019
Allpassed

@ Tokenapi
No environment
Allpassed

un, 2019

@ Fostmanecho
No envir
Allpassed

Collection Runner

Runs

CURRENT RUN

< TOKEN-API

healthcheck
login

token

coren-tokenapi

‘Choose Files | No file chosen

Run TOKEN-API

Add Monitors.

RESULTS

Run in command line

_images/trustos_modules.png
TRACK API CERT API TOKEN API

ID API

_images/trustos_swagger.png
TrustOS

Welcome to 1TUstOS

Choose an APl and start developing your solution

= | | @

TRACKAPI TOKEN API CERTAPI

W/ %

TRUSTOS NDAS TRUSTOS CERTS

Any question about how to use the APIs? Here is the docs

®9® Telefénica
® Tech

_images/trustid-flow.png
Registry ID
fesisuv D Users

SignedRequest { did, payload},

get Identity (did)

publicKey

verify signature pnd parse payload

get Service and check
access(did, didService)

OK access, chaincode Name

_images/trustos_certs_home.png
Trustos Platform Docs

Certificate ID Q

I UPLOAD PDF I CREATE MANUALLY

TRUSTOS CERTS

POWERED BY TRUSTOS @
A

WHAT IS TRUSTOS CERTS?

TrustOS Certs is a blockchain-based certification platform that allows to create and verify documents, actions, facts or states in a easy and fast way. You
can create, share, sign and verify every type of data as digital certificates, as same time as you legally protect your businesses and create trust links with

your customers

HOW IT WORKS?

_static/ajax-loader.gif

_images/vaccine_tracker.png
VACC’NE TRACKER Trustos Platform

Vaccine Tracker is an easy demo based on TRACK API that allows us to follow the whole transport process for a vaccine fromorigin
to destination.

You just need to put the identifier of your asset (assetld) to start displaying the tracking info. Also if needed you can create alarms
in order to monitor constantly critical measures (e.